Mach 16.53W

Wednesday 18 October 2023
dr Adam Abrams

Warm-up: Does this graph have a hole, jump, asymptote, or none of these?

$$
\text { What does } \lim _{n \rightarrow \infty} \frac{n}{n+5}=1 \text { mean? }
$$

- Formally: for any $\varepsilon>0$,

$$
\begin{gathered}
1-\varepsilon<\frac{n}{n+5}<1+\varepsilon \text { for all } n>\frac{5-5 \varepsilon}{\varepsilon} . \\
\left|\frac{n}{n+\sigma}-1\right|<\varepsilon
\end{gathered}
$$

- Informally:

$$
\begin{aligned}
& \frac{n}{n+5} \text { is very close to } 1 \text { when } n \text { is very big. } \\
& \frac{10000}{10005}=0.9995002 \ldots
\end{aligned}
$$

Limit rules

It will often be useful to know the limit of r^{n} where r is a constant number.

- If $-1<r<1$ then $\lim _{n \rightarrow \infty} r^{n}=0$.
- If $r=1$ then $\lim _{n \rightarrow \infty} r^{n}=1$.
- If $r \leq-1$ then $\lim _{n \rightarrow \infty} r^{n}$ does not exist.
- If $r>1$ then $\lim _{n \rightarrow \infty} r^{n}=\infty$.

Limit rules

When we have a ratio of two polynomials, the limit

$$
\lim _{n \rightarrow \infty} \frac{A n^{d}+\cdots}{B n^{e}+\cdots}
$$

can be found very quickly. (Here "..." are terms with smaller powers of n).

- If $d<e$ then the limit is 0 .
- If $d=e$ then the limit is $\frac{A}{B}$.
- If $d>e$ then
- the limit is ∞ if $\frac{A}{B}>0$.
- the limit is $-\infty$ if $\frac{A}{B}<0$.

Limit rules

If the limits all exist and are finite, then

- $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\left(\lim _{n \rightarrow \infty} a_{n}\right)+\left(\lim _{n \rightarrow \infty} b_{n}\right)$,
- $\lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=\left(\lim _{n \rightarrow \infty} a_{n}\right)\left(\lim _{n \rightarrow \infty} b_{n}\right)$,
- $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{x \rightarrow a} b_{n}}$ if $\lim _{n \rightarrow \infty} b_{n} \neq 0$,
- $\lim _{n \rightarrow \infty} a_{n}^{p}=\left(\lim _{n \rightarrow \infty} a_{n}\right)^{p} \quad$ for any real number p.
- $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
- $\lim _{n \rightarrow \infty}\left(c \cdot a_{n}\right)=c \cdot\left(\lim _{n \rightarrow \infty} a_{n}\right)$

It is often helpful to think of

$$
\infty-5=\infty, \quad \frac{\infty}{2}=\infty, \quad \frac{14}{\infty}=0, \quad \infty+\infty=\infty
$$

for $\lim _{n \rightarrow \infty}\left(\sqrt{n}-\frac{5 n}{n-1}\right)$, etc., but be careful! We cannot say

$$
\infty-\infty=0 \quad \text { or } \quad \frac{\infty}{\infty}=1
$$

because, for example,

$$
\lim _{n \rightarrow \infty} \frac{n+1}{2 n}=\frac{1}{2}, \quad \lim _{n \rightarrow \infty} \frac{2^{n}}{2 n+1}=\infty, \quad \lim _{n \rightarrow \infty} \frac{\sqrt{n}}{2 n+1}=0
$$

are all " \qquad

There is no way to simplify $\frac{\infty}{\infty}$ that always works.
This is an example of an indeterminate form. Other indeterminate forms include

$$
\infty-\infty, \quad \frac{0}{0}, \quad 0 \times \infty, \quad 0^{0}, \quad 1^{\infty}, \quad \infty^{0} .
$$

Depending on what formulas are causing 0 or $\pm \infty$ to appear, limits with these patterns can have many different values.

More Limit rules

The Squeeze Theorem: if $a_{n} \leq b_{n} \leq c_{n}$ for all $n>N$, and $\lim _{n \rightarrow \infty} a_{n}=L$, and $\lim c_{n}=L$, then $\lim b_{n}=L$.

$$
n \rightarrow \infty
$$

$$
n \rightarrow \infty
$$

$$
n \rightarrow \infty
$$

The Comparison Test: if $a_{n} \leq b_{n}$ for all $n>N$ and $\lim _{n \rightarrow \infty} a_{n}=\infty$ then $\lim _{n \rightarrow \infty} b_{n}=\infty$.
(There is a similar rule about $-\infty$ too.)

Many limits can be calculated using the Squeeze Theorem, but finding (and proving!) useful inequalities can be difficult.

- Example 1 (good): $\lim _{n \rightarrow \infty} \frac{3 \sin \left(n^{5}\right)}{n^{2}}=0$ because $\frac{-3}{n^{2}} \leq \frac{3 \sin \left(n^{5}\right)}{n^{2}} \leq \frac{3}{n^{2}}$
and we know $\lim _{n \rightarrow \infty} \frac{-3}{n^{2}}=0$ and $\lim _{n \rightarrow \infty} \frac{3}{n^{2}}=0$ from other rules.
- Example 2 (hard): $\lim _{n \rightarrow \infty} n^{1 / n}=1$ because $1 \leq n^{1 / n} \leq \frac{\sqrt{n}+2}{\sqrt{n}}$ and we
know $\lim _{n \rightarrow \infty} 1=1$ and $\lim _{n \rightarrow \infty} \frac{\sqrt{n}+2}{\sqrt{n}}=1$ from other rules.

Functions

We have been talking about sequences, but for the the rest of the year we will be dealing with functions.

- $f(x)=2 \sqrt{x}$
- $g(x)=x+2$
- $f(x)=\ln (x)+1$
- $f(t)=\cos (3 t)$

You should be able lo draw these graphs by hand already.

- $P(x)=x^{3}-x$
- $r(x)=\frac{x+4}{x^{2}-2 x}$

We will analyze these later.

- $f(x)=\arctan (x)$

$$
y=2 \sqrt{x} \quad y=|x-2| \quad y=\ln (x)+1 \quad y=\cos (3 t)
$$

A piecewise-defined function uses different formulas for different inputs. We write these using a single large "curly bracket" (\{).

Example: $f(x)=\left\{\begin{array}{cl}x+1 & \text { if } x<1 \\ x^{2} & \text { if } x \geq 1\end{array}\right.$.
Note the "open circle" o or "empty circle" at $(1,2)$ and the "filled circle" \bullet at $(1,1)$.

A piecewise-defined function uses different formulas for different inputs. We write these using a single large "curly bracket" (\{).

Limits as $x \rightarrow \pm \infty$

We can do limits with functions. "lim" is almost identical to " \lim ". The official definitions are

- $\lim _{n \rightarrow \infty} a_{n}=L$ means that for any $\varepsilon>0$ there exists a N such that

$$
\text { if } n \in \mathbb{N} \text { and } n>N \text { then }\left|a_{n}-L\right|<\varepsilon \text {. }
$$

- $\lim _{x \rightarrow \infty} f(x)=L$ means that for any $\varepsilon>0$ there exists an X such that

$$
\text { if } x>X \text { then }|f(x)-L|<\varepsilon \text {. }
$$

There is also " $\lim _{x \rightarrow-\infty}$ ", but this is almost the same: $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow \infty} f(-x)$.

Limits as $x \rightarrow \pm \infty$

The line $y=c$ is a horizontal asymptote of the graph $y=f(x)$ if

$$
\lim _{x \rightarrow-\infty} f(x)=c \text { or } \lim _{x \rightarrow \infty} f(x)=c .
$$

Examples:

- $f(x)=\frac{10 x-3}{2 x^{2}+1}$ has a horizontal asymptote at $y=0$.
$f(x)=\frac{10 x^{2}-3}{2 x^{2}+1}$ has a horizontal asymptote at $y=5$.

For the function

$$
f(x)=\frac{x^{2}-x-2}{x-2}
$$

when $x=2$,

$$
f(2)=\frac{2^{2}-2-2}{2-2}=\frac{0}{0}=\text {. }
$$

But if we look at the graph $y=\frac{x^{2}-x-2}{x-2}$, we will be able to say more
about $f(2)$.

For the function

$$
f(x)=\frac{x^{2}-x-2}{x-2}
$$

All of the x-values very close to 2 give us values of $f(x)$ very close to 3 .

In symbols, we write

$$
\lim _{x \rightarrow 2} f(x)=3
$$

for this function.

For the function

$$
f(x)=\frac{x^{2}-x-2}{x-2}
$$

we can also use a table of values to find $\lim f(x)$.

$$
x \rightarrow 2
$$

x	1.8	1.9	1.99	1.999	2.001	2.005	2.1
$f(x)$	2.8	2.9	2.99	2.999	3.001	3.005	3.1

Note: this "Limik" is about what happens when the input is CLOSE to a certain value but NOT exackly equal to it. We do NOT include $x=2$ in this table.

Limits as $x \rightarrow a$

In general, we write

$$
\lim _{x \rightarrow a} f(x)=L,
$$

if all values of x very close a give values of $f(x)$ that are very close to L.

The equation above is said out loud as "the limit as X goes to A of F of X equals L"
or
"the limit as X approaches A of F of X equals L ".

Limits as $x \rightarrow a$

In general, we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

if all values of x very close a give values of $f(x)$ that are very close to L.

Again there is an official definition using " ε " as any small value:

- $\lim f(x)=L$ means that for any $\varepsilon>0$ there exists $\delta>0$ such that $x \rightarrow a$

$$
\text { if } 0<|x-a|<\delta \text { then }|f(x)-L|<\varepsilon
$$

Example: find $\lim _{x \rightarrow 5} \frac{x-5}{x^{2}-25}$.
Method 1: Cable

x	4.9	4.95	4.99	4.999	5.001	5.005	5.02	5.1
$f(x)$	0.10101	0.10050	0.10010	0.10001	0.09999	0.09995	0.09980	0.09901

Method 2: graph

Method 3: algebra
$\frac{x-6}{(x-5)(x+5)}$ simplifies* to $\frac{1}{x+\sigma}$, and when $x=5$, we have $\frac{1}{(6)+6}=\frac{1}{10}$.
*Technically $\frac{x-5}{(x-5)(x+5)}=\frac{1}{x+5}$ requires $x \neq 5$, but since " $\lim _{x \rightarrow 5}$ is about when x is near 5 , not exactly 5 , this is okay.

Limil properties

For any numbers a and c,

- $\lim c=c$ and
$x \rightarrow a$
- $\lim x=a$.
$x \rightarrow a$

Examples: $\lim _{x \rightarrow 6}(27)=27$ and $\quad \lim _{x \rightarrow 6}(x)=6$.

These should not be surprising.

Limit properties

If the limits all exist and are finite, then

- $\lim _{x \rightarrow a}(f(x)+g(x))=\left(\lim _{x \rightarrow a} f(x)\right)+\left(\lim _{x \rightarrow a} g(x)\right)$,
- $\lim _{x \rightarrow a}(f(x) \cdot g(x))=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$,
- $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$,

- $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$ if f is a "nice" function.

$$
\text { - } \lim _{x \rightarrow a}(c \cdot f(x))=c \cdot\left(\lim _{x \rightarrow a} f(x)\right)
$$

Later we will see exactly when $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$ is allowed.
For now, it is enough to know that...

- any polynomial
- This includes x^{2}.
- $\sqrt[n]{x}$
- $\sin (x)$ and $\cos (x)$
- e^{x} and a^{x} with $a>0$
- $\ln (x)$ and $\log _{b}(x)$ with $b>0$
can all be used safely in this limit rule.
*You might only be allowed to use $x \geq 0$ or $x>0$ with these functions.

Example: Calculate $\lim x^{2}-15 x+9$ using the limit properties.

$$
x \rightarrow 3
$$

$$
\begin{aligned}
\lim _{x \rightarrow 3} x^{2}-15 x+9 & =\left(\lim _{x \rightarrow 3} x^{2}\right)-\left(\lim _{x \rightarrow 3} 15 x\right)+\left(\lim _{x \rightarrow 3} 9\right) \\
& =\left(\lim _{x \rightarrow 3} x\right)^{2}-15\left(\lim _{x \rightarrow 3} x\right)+\left(\lim _{x \rightarrow 3} 9\right) \\
& =(3)^{2}-15 \cdot(3)+(9) \\
& =-27
\end{aligned}
$$

This is same as the value of $x^{2}-15 x+9$ itself when $x=3$.
I will say more later about when we can find limits just by plugging in an x value.

Infinite limits

Sometimes the limit as x approaches some finite point will be ∞ or $-\infty$.
For example, $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$.
This means that for values of x very close to 0 , the values of $f(x)$ are all extremely large.

Infinite limits

Sometimes the limit as x approaches some finite point will be ∞ or $-\infty$.
For example, $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$.
Official definitions (we won't use these):

- $\lim _{x \rightarrow a} f(x)=\infty$ means that for any $M>0$ there exists $\delta>0$ such that $x \rightarrow a$

$$
\text { if }|x-a|<\delta \text { then } f(x)>M
$$

- $\lim f(x)=-\infty$ means that for any $M>0$ there exists $\delta>0$ such that $x \rightarrow a$

$$
\text { if }|x-a|<\delta \text { then } f(x)<-M
$$

Some limit properties, such as

$$
\lim _{x \rightarrow a}(f(x)+g(x))=\left(\lim _{x \rightarrow a} f(x)\right)+\left(\lim _{x \rightarrow a} g(x)\right),
$$

do not work with infinite limits.

Remember that $\infty-\infty$ and $\frac{\infty}{\infty}$ are indeterminate forms. We can not just say that " $\infty-\infty=0$ " because subtracting functions with infinite limits can give many different answers. Both

$$
\text { - } \lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{x^{2}}\right)=0 \quad \text { - } \lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{x^{4}}\right)=-\infty
$$

are " $\infty-\infty$ " in some way.

$$
y=\frac{1}{x^{2}} \quad y=\frac{1}{x}
$$

$\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$

$\lim _{x \rightarrow 0} \frac{1}{x}$ doesn k exist

One-sided limits

We write

$$
\lim _{x \rightarrow a^{-}} f(x)
$$

for the "limit as x approaches a from the left" or "... from below". This means we only look at x values that are less than a.

Similarly,

$$
\lim _{x \rightarrow a^{+}} f(x)
$$

means the "limit as \boldsymbol{x} approaches \boldsymbol{a} from the right" or "... from above", where we only look at x values that are more than a.

One-sided limits

We write

$$
\lim _{x \rightarrow a^{-}} f(x)
$$

for the "limit as x approaches a from the left" or "... from below". This means we only look at x values that are less than a.

Example: $\lim _{x \rightarrow 0^{-}} x \sqrt{1+\frac{1}{x^{2}}}=-1$.

x	-0.1	-0.06	-0.01	-0.001	-0.0001
$f(x)$	-1.00499	-1.001249	-1.00006	-1.0000006	-1.00000001

One-sided limits

We write

$$
\lim _{x \rightarrow a^{-}} f(x)
$$

for the "limit as x approaches a from the left" or "... from below". This means we only look at x values that are less than a.

Example: $\lim _{x \rightarrow 0^{-}} x \sqrt{1+\frac{1}{x^{2}}}=-1$.

One-sided limits

Note: writing

$$
4^{+}
$$

by itself does not mean anything (like $\sqrt{ }$ or alone). This should only be written as part of a limit:

$$
\lim _{x \rightarrow 4^{+}} f(x) .
$$

Some books use $\lim _{x>4} f(x)$ and $\lim _{x>4} f(x)$ instead of $\lim _{x \rightarrow 4^{-}} f(x)$ and $\lim _{x \rightarrow 4^{+}} f(x)$.

One-sided limits

All of the limit rules for functions, such as

- $\lim _{x \rightarrow a}(f(x)+g(x))=\left(\lim _{x \rightarrow a} f(x)\right)+\left(\lim _{x \rightarrow a} g(x)\right)$,
can also be used with one-sided limits:
- $\lim _{x \rightarrow a^{-}}(f(x)+g(x))=\left(\lim _{x \rightarrow a^{-}} f(x)\right)+\left(\lim _{x \rightarrow a^{-}} g(x)\right)$,
- $\lim _{x \rightarrow a^{+}}(f(x)+g(x))=\left(\lim _{x \rightarrow a^{+}} f(x)\right)+\left(\lim _{x \rightarrow a^{+}} g(x)\right)$.

One-sided limits are related to standard limits in the following way:

$$
\begin{aligned}
& \text { If } \lim _{x \rightarrow a^{-}} f(x) \text { and } \lim _{x \rightarrow a^{+}} f(x) \text { have different values, or if at least one of } \\
& \text { them does not exist, then } \lim _{x \rightarrow a} f(x) \text { does not exist. }
\end{aligned}
$$

Logically, this also means that

- if $\lim f(x)$ exists then $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim f(x)$ exist and are equal. $x \rightarrow a$ $x \rightarrow a^{-}$ $x \rightarrow a^{+}$

