Wednesday 18 October 2023

Warm-up: Does this graph have a hole, jump, asymptote, or none of these?

Mach 165 M

dr Adam Abrams

What does $\lim_{n \to \infty} \frac{n}{n+5} = 1$ mean?

• Formally: for any $\varepsilon > 0$, $1 - \varepsilon < \frac{n}{n+5} < 1 + \varepsilon \text{ for all } n > \frac{5 - 5\varepsilon}{\varepsilon}. \qquad 0.98 < \frac{n}{n+5} < 1.02$ $\frac{n}{n+s} - 1 < \varepsilon$

Informally: 0 n+5 is very close to 1 when *n* is very big.

 $\frac{10000}{10005} = 0.9995002...$

It's possible to make $\frac{n}{0.9 < \frac{n}{n+5} < 1.1}$ and and $0.99999 < \frac{h}{h+5} < 1.0001$ for all h > N, if we choose the right N.

It will often be useful to know the limit of r^n where r is a constant number. • If -1 < r < 1 then $\lim r^n = 0$. $n \rightarrow \infty$

• If r = 1 then $\lim r^n = 1$. $n \rightarrow \infty$

• If $r \le -1$ then $\lim r^n$ does not exist. $n \rightarrow \infty$

• If r > 1 then $\lim r^n = \infty$. $n \rightarrow \infty$

When we have a ratio of two polynomials, the limit

can be found very quickly. (Here " \cdots " are terms with smaller powers of n).

- If d < e then the limit is 0.
- If d = e then the limit is $\frac{A}{B}$.
- If d > e then
 - the limit is ∞ if $\frac{A}{B} > 0$.
 - the limit is $-\infty$ if $\frac{A}{R} < 0$.

$\lim_{n \to \infty} \frac{An^d + \cdots}{Bn^e + \cdots}$

lf [·]	the limits all exist and are <i>finite</i> , t
0	$\lim_{n \to \infty} \left(a_n + b_n \right) = \left(\lim_{n \to \infty} a_n \right)$
3	$\lim_{n \to \infty} \left(a_n \cdot b_n \right) = \left(\lim_{n \to \infty} a_n \right) \left($
3	$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{x \to a} b_n} \text{if } \lim_{n \to \infty} a_n$
0	$\lim_{n \to \infty} a_n^p = \left(\lim_{n \to \infty} a_n\right)^p \text{for a}$
0	$\lim_{n \to \infty} \frac{1}{n} = 0.$

then

$$+\left(\lim_{n\to\infty}b_n\right),$$

 $\lim b_n$ $n \rightarrow \infty$

m $b_n \neq 0$, $\cdot \infty$

with $b_n = c$ constant

any real number p.

 $\circ \lim_{n \to \infty} \left(c \cdot a_n \right) = c \cdot \left(\lim_{n \to \infty} a_n \right)$

It is often helpful to think of $\infty - 5 = \infty, \qquad \frac{\infty}{2} = \infty, \qquad \frac{14}{\infty} = 0, \qquad \infty + \infty = \infty$ for $\lim_{n \to \infty} (\sqrt{n} - \frac{5n}{n-1})$, etc., but be careful! We <u>cannot</u> say $\infty - \infty = 0$ or $\frac{\infty}{\infty} = 1$

because, for example, ∞ are all "---". ∞

 $\lim_{n \to \infty} \frac{n+1}{2n} = \frac{1}{2}, \qquad \lim_{n \to \infty} \frac{2^n}{2n+1} = \infty, \qquad \lim_{n \to \infty} \frac{\sqrt{n}}{2n+1} = 0$

There is no way to simplify $\frac{\infty}{\infty}$ that always works. This is an example of an indeterminate form. Other indeterminate forms include

Depending on what formulas are causing 0 or $\pm \infty$ to appear, limits with these patterns can have many different values.

$\infty - \infty, \qquad \frac{0}{0}, \qquad 0 \times \infty, \qquad 0^0, \qquad 1^\infty, \qquad \infty^0.$

The Squeeze Theorem: if $a_n \leq b_n \leq c_n$ for all n > N, and $\lim a_n = L$, and $\lim c_n = L$, then $\lim b_n = L$. $n \rightarrow \infty$ $n \rightarrow \infty$

The Comparison Test: if $a_n \leq b_n$ for all n > N and $\lim a_n = \infty$ then $\lim b_n = \infty$. $n \rightarrow \infty$ $n \rightarrow \infty$ (There is a similar rule about $-\infty$ too.)

 $n \rightarrow \infty$

Many limits can be calculated using the Squeeze Theorem, but finding (and proving!) useful inequalities can be difficult.

Example 1 (good): $\lim_{n \to \infty} \frac{3\sin(n^5)}{n^2} = 0 \text{ because } \frac{-3}{n^2} \le \frac{3\sin(n^5)}{n^2} \le \frac{3}{n^2}$ and we know $\lim_{n \to \infty} \frac{-3}{n^2} = 0$ and $\lim_{n \to \infty} \frac{3}{n^2} = 0$ from other rules.

 \sqrt{n}

Example 2 (hard): $\lim_{n \to \infty} n^{1/n} = 1$ because $1 \le n^{1/n} \le \frac{\sqrt{n+2}}{\sqrt{n}}$ and we know $\lim_{n \to \infty} 1 = 1$ and $\lim_{n \to \infty} \frac{\sqrt{n+2}}{\sqrt{n}} = 1$ from other rules.

be dealing with functions.

•
$$f(x) = 2\sqrt{x}$$

$$\circ g(x) = x + 2$$

•
$$f(x) = \ln(x) + 1$$

•
$$f(t) = \cos(3t)$$

•
$$P(x) = x^3 - x$$

•
$$r(x) = \frac{x+4}{x^2-2x}$$

• $f(x) = \arctan(x)$

We have been talking about sequences, but for the the rest of the year we will

You should be able to draw these graphs by hand already.

We will analyze these later.

A piecewise-defined function uses different formulas for different inputs. We write these using a single large "curly bracket" ({).

Example:
$$f(x) = \begin{cases} x+1 & \text{if } x < \\ x^2 & \text{if } x \ge \end{cases}$$

Note the "open circle" or "empty circle" at (1,2) and the "filled circle" • at (1,1).

A piecewise-defined function uses different formulas for different inputs. We write these using a single large "curly bracket" ({).

position

These kinds of functions are actually very common in the real world.

$\chi \rightarrow \infty$ definitions are

lim $a_n = L$ means that for any $\varepsilon > 0$ there exists a N such that $n \rightarrow \infty$

 $\lim_{x \to \infty} f(x) = L$ means that for any $\varepsilon > 0$ there exists an X such that $\chi \rightarrow \infty$ if x > X then $|f(x) - L| < \varepsilon$.

 $\chi \rightarrow -\infty$

We can do limits with functions. "Im" is almost identical to "Im". The official $n \rightarrow \infty$

if $n \in \mathbb{N}$ and n > N then $|a_n - L| < \varepsilon$.

There is also " $\lim x$, but this is almost the same: $\lim f(x) = \lim f(-x)$. $\chi \rightarrow -\infty$ $\chi \rightarrow \infty$

The line y = c is a horizontal asymptote of the graph y = f(x) if $\lim_{x \to -\infty} f(x) = c \quad \text{or} \quad \lim_{x \to \infty} f(x) = c.$

Examples: • $f(x) = \frac{10x - 3}{2x^2 + 1}$ has a horizontal asymptote at y = 0.

• $f(x) = \frac{10x^2 - 3}{2x^2 + 1}$ has a horizontal asymptote at y = 5.

For the function

when x = 2,

about f(2).

 $f(x) = \frac{x^2 - x - 2}{x - 2},$

 $f(2) = \frac{2^2 - 2 - 2}{2 - 2} = \frac{0}{0} = \frac{0}{0}.$

But if we look at the graph $y = \frac{x^2 - x - 2}{x - 2}$, we will be able to say more

For the function

 $f(x) = \frac{x^2 - x - 2}{x - 2},$

All of the *x*-values very close to 2 give us values of f(x) very close to 3.

In symbols, we write $\lim_{x \to 2} f(x) = 3$

for this function.

For the function

we can also use a table of values to find $\lim f(x)$.

${\mathcal X}$	1.8	1.9	1.99	1.999	2.001	2.005	2.1
f(x)	2.8	2.9	2.99	2.999	3.001	3.005	3.1
These are very close to 3.							

Note: this "limit" is about what happens when the input is CLOSE to a certain value but NOT exactly equal to it. We do NOT include x = 2 in this table.

 $f(x) = \frac{x^2 - x - 2}{x - 2},$

 $x \rightarrow 2$

In general, we write

 $X \rightarrow a$

if all values of x very close a give values of f(x) that are very close to L.

The equation above is said out loud as "the limit as X goes to A of F of X equals L"

Or

"the limit as X approaches A of F of X equals L".

$\lim_{x \to \infty} f(x) = L,$

In general, we write

if all values of x very close a give values of f(x) that are very close to L. Again there is an official definition using " ε " as any small value: im f(x) = L means that for any $\varepsilon > 0$ there exists $\delta > 0$ such that $X \rightarrow a$ if $0 < |x - a| < \delta$ then $|f(x) - L| < \varepsilon$.

 $X \rightarrow a$

$\lim_{x \to \infty} f(x) = L,$

Example: find $\lim_{x \to 5} \frac{x-5}{x^2-25}$.

$\boldsymbol{\mathcal{X}}$	4.9	4.95	4.99	
f(x)	0.10101	0.10050	0.10010	(

		Melh	od 1:	table
.999	5.001	5.005	5.02	5.1
10001	0.09999	0.09995	0.09980	0.09901

Method 3: algebra $\frac{x-5}{(x-5)(x+5)} \text{ simplifies* to } \frac{1}{x+5},$ and when x = 5, we have $\frac{1}{(5)+5} = \frac{1}{10}$. *Technically $\frac{x-5}{(x-5)(x+5)} = \frac{1}{x+5}$ requires $x \neq 5$, but since "lim" is about when x is near 5, not exactly 5, $x \rightarrow 5$ this is okay.

For any numbers a and c, o lim c = c and $X \rightarrow a$ $\lim x = a.$ $x \rightarrow a$

lim(27) = 27 and Examples: $x \rightarrow 6$

These should not be surprising.

$\lim(x) = 6.$ $x \rightarrow 6$

If the limits all exist and are finite, then

- $\lim_{x \to a} \left(f(x) + g(x) \right) = \left(\lim_{x \to a} f(x) \right)$
- $\lim_{x \to a} \left(f(x) \cdot g(x) \right) = \left(\lim_{x \to a} f(x) \right)$
- $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{if } \lim_{x \to a} g(x) \neq 0,$
- $\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$ if *f* is a "nice" function. $x \rightarrow a$ $x \rightarrow a$

Limit proposition lies

$$)) + \left(\lim_{x \to a} g(x)\right)$$
$$) \left(\lim_{x \to a} g(x)\right),$$

 $\lim_{x \to a} \left(c \cdot f(x) \right) = c \cdot \left(\lim_{x \to a} f(x) \right)$

Later we will see exactly when $\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$ is allowed. For now, it is enough to know that... any polynomial • This includes x^2 . $\sqrt[n]{\chi}$ • sin(x) and cos(x)• e^x and a^x with a > 0• $\ln(x)$ and $\log_b(x)$ with b > 0can all be used safely in this limit rule.

*You might only be allowed to use $x \ge 0$ or x > 0 with these functions.

 $\implies \lim_{x \to a} \left(f(x)^2 \right) = \left(\lim_{x \to a} f(x) \right)^2$

Example: Calculate $\lim_{x\to 3} x^2 - 15x$

$\lim_{x \to 3} x^2 - 15x + 9 = \left(\lim_{x \to 3} x + 3 \right)^2 = \left(\lim_{x \to 3} x +$

This is same as the value of $x^2 - 15x + 9$ itself when x = 3. I will say more later about when we can find limits just by plugging in an x value.

+ 9 using the limit properties.

$$x^{2} - \left(\lim_{x \to 3} 15x\right) + \left(\lim_{x \to 3} 9\right)$$

$$x^{2} - 15\left(\lim_{x \to 3} x\right) + \left(\lim_{x \to 3} 9\right)$$

$$-15 \cdot (3) + (9)$$

For example,
$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$
.

This means that for values of *x* very close to 0, the values of f(x)are all extremely large.

Sometimes the limit as x approaches some finite point will be ∞ or $-\infty$.

For example,
$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$
.

Official definitions (we won't use these): $X \rightarrow a$

 $X \rightarrow a$

Sometimes the limit as x approaches some finite point will be ∞ or $-\infty$.

 δ lim $f(x) = \infty$ means that for any M > 0 there exists $\delta > 0$ such that if $|x - a| < \delta$ then f(x) > M. δ lim $f(x) = -\infty$ means that for any M > 0 there exists $\delta > 0$ such that if $|x - a| < \delta$ then f(x) < -M.

Some limit properties, such as

do not work with infinite limits.

can give many different answers. Both $\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{x^2} \right) = 0$ are " $\infty - \infty$ " in some way.

 $\lim_{x \to a} \left(f(x) + g(x) \right) = \left(\lim_{x \to a} f(x) \right) + \left(\lim_{x \to a} g(x) \right),$

Remember that $\infty - \infty$ and $\frac{\infty}{2}$ are indeterminate forms. We can **not** just say that " $\infty - \infty = 0$ " because subtracting functions with infinite limits

$$\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{x^4} \right) = -\infty$$

We write

for the "limit as x approaches a from the left" or "... from below". This means we only look at x values that are less than a.

Similarly,

means the "limit as x approaches a from the right" or "... from above", where we only look at x values that are more than a.

ONCOSICACE LEMAILS

 $\lim_{x \to \infty} f(x)$ $x \rightarrow a^{-}$

 $\lim f(x)$

We write

means we only look at x values that are less than a.

Example:
$$\lim_{x \to 0^-} x \sqrt{1 + \frac{1}{x^2}} = -1.$$

×	-0,1	-0,05	-0,01	-0,001	-0,0001
f(x)	-1,00499	-1.001249	-1,00005	-1,0000005	-1,00000001

ONG SECCED LEMES

- $\lim f(x)$ $x \rightarrow a^{-}$
- for the "limit as x approaches a from the left" or "... from below". This

We write

means we only look at x values that are less than a.

Example: $\lim_{x \to 0^-} x \sqrt{1 + \frac{1}{x^2}} = -1.$

 $\lim_{x \to 0^+} x \sqrt{$ $1 + \frac{1}{2} = 1$. x^2

ONCESICACE LEMALES

- $\lim_{x \to \infty} f(x)$ $x \rightarrow a^{-}$
- for the "limit as x approaches a from the left" or "... from below". This 2

2

Note: writing

by itself does not mean anything (like $\sqrt{}$ or alone). This should only be written as part of a limit:

Some books use $\lim_{x \neq 4} f(x)$ and $\lim_{x \searrow 4} f(x)$ instead of $\lim_{x \to 4^-} f(x)$ and $\lim_{x \to 4^+} f(x)$.

ONG SECCE LEMES

 $\lim_{x \to 4^+} f(x).$

 4^{+}

All of the limit rules for functions, such as • $\lim_{x \to a} \left(f(x) + g(x) \right) = \left(\lim_{x \to a} f(x) \right)$ can also be used with one-sided limits: $\lim_{x \to a^-} \left(f(x) + g(x) \right) = \left(\lim_{x \to a^-} f(x) \right) + \left(\lim_{x \to a^-} g(x) \right),$ $\lim_{x \to a^+} \left(f(x) + g(x) \right) = \left(\lim_{x \to a^+} f(x) \right) + \left(\lim_{x \to a^+} g(x) \right).$

$$\left(\lim_{x \to a} g(x)\right)$$

One-sided limits are related to standard limits in the following way:

$x \rightarrow a^+$ $x \rightarrow a^{-}$

Logically, this also means that • if $\lim f(x)$ exists then $\lim f(x)$ and $\lim f(x)$ exist and are equal. $x \rightarrow a^{-}$ $X \rightarrow a$

- If $\lim f(x)$ and $\lim f(x)$ have different values, or if at least one of
 - them does not exist, then $\lim_{x \to \infty} f(x)$ does not exist. $x \rightarrow a$

$x \rightarrow a^+$